Eisenstein Polynomials Associated to Binary Codes
نویسنده
چکیده
The Eisenstein polynomial is the weighted sum of all classes of Type II codes of fixed length. In this note, we investigate the ring of the Eisenstein polynomials in genus 2.
منابع مشابه
EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملTotally Ramified Primes and Eisenstein Polynomials
is Eisenstein at a prime p when each coefficient ci is divisible by p and the constant term c0 is not divisible by p 2. Such polynomials are irreducible in Q[T ], and this Eisenstein criterion for irreducibility is the way nearly everyone first meets Eisenstein polynomials. Here, we will show Eisenstein polynomials are closely related to total ramification of primes in number fields. Let K be a...
متن کاملT. N. Shorey’s Influence in the Theory of Irreducible Polynomials
The idea of looking at the prime factorization of the coefficients of a polynomial in Z[x] in order to establish its irreducibility (over Q) goes back to the classical Schönemann-Eisenstein criterion first derived in [29] and [6] in the middle of the 19th century. At the beginning of the 20th century, G. Dumas [5], again making use of primes that divide the coefficients of a polynomial, introdu...
متن کاملThe construction of self-dual binary codes from projective planes of odd order
Every finite projective plane of odd order has an associated self-dual binary code with parameters (2(q2 + q + q2 + q + 1, We also construct other related self-orthogonal and doubly-even codes, and the vectors of minimum weight. The weight enumerator polynomials for the planes of orders 3 and 5 are found. The boundary and coboundary maps are introduced.
متن کاملOn the Zeros of Certain Modular Functions for the Normalizers of Congruence Subgroups of Low Levels I
Abstract. We research the location of the zeros of the Eisenstein series and the modular functions from the Hecke type Faber polynomials associated with the normalizers of congruence subgroups which are of genus zero and of level at most twelve. In Part I, we will consider the general theory of modular functions for the normalizers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007